Département Infrastructures Marines et Numériques Unité Informatique et Données Marines

Auteur:

Françoise Le Hingrat

07 Septembre 2021 SISMER - R.INT.IDM/SISMER/SIS22_025

DONNEES ADCP DU N/O MARION DUFRESNE?

Année 2019

ADCP de coque OS-38 / OS-150 / OS-75 kHz

SOMMAIRE

1	INTRODUCTION GENERALE	3
1.1	Récapitulatif des campagnes	3
1.2	Récapitulatif sur la qualité des données	3
2	TR_DURLPO (OCTOBRE) - OS150 - WT	4
2.1	Qualité des données reçues2.1.1CORR_ECI2.1.2CAP/ROULIS/TANGAGE	4
2.2	Composantes parallèle et orthogonale	5
2.3	Invalidation entre deux ensembles	5
2.4	Matérialisation des périodes sans mesure	5
2.5	Correction de désalignement	5
2.6	Nettoyage des données	6
2.7	Exploitation des données – Tracés	6 7
	2.7.1.1.4000 400 100004.0 400 0000010	

1 Introduction générale

Ce document présente le traitement des données ADCP de coque, du navire Océanographique 'Marion Dufresne' pour les campagnes qui se sont déroulées en 2019.

Les données sont exploitées à l'aide du logiciel CASCADE V7.2 développé sous MATLAB par le LPO (C. Kermabon) et sur Datarmor.

1.1 Récapitulatif des campagnes

Nom campagne	Type ADCP	Période	Zone
TR_DURLPO	OS150	27/10/2019	Océan Indien
		31/10/2019	

Tableau 1 – Liste des campagnes présentes dans ce document

1.2 Récapitulatif sur la qualité des données

Nom campagne	Type ADCP	Période	Zone	Bonnes (%)	Absentes (%)	Sous fond (%)	Portée max (m)
TR_DURLPO	OS150WT	Octobre	Océan Indien	50.28	32.82	2.60	400

Tableau 2 : Qualité des données présentes dans ce document

2 TR_DURLPO (Octobre) - OS150 - WT

Ce transit comprend 4 fichiers STA en WT.

Le trajet du navire est le suivant :

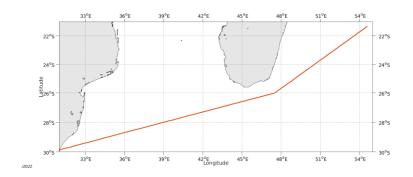


Figure 1- Route du navire durant la campagne

2.1 Qualité des données reçues

2.1.1 CORR_ECI

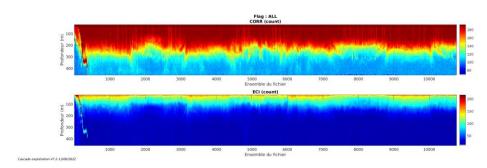
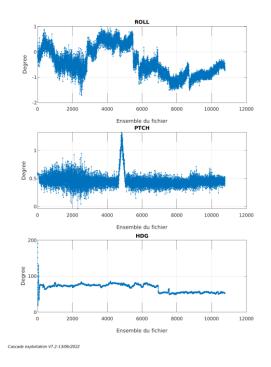



Figure 2 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

2.1.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

2.2 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	Corrélation Min	Corrélation Max
Composante parallèle	0.0	0.0
Composante orthogonale	0.0	0.0

Tableau 3-Composantes parallèle et orthogonale

2.3 Invalidation entre deux ensembles

Pas d'objet.

2.4 Matérialisation des périodes sans mesure

Pas d'objet.

2.5 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement et améliorer la vitesse verticale moyenne sur les bonnes données.

Valeurs rentrées au moment du désalignement :

Angle de désalignement	-7.61	
Amplitude	1 (valeur par defaut)	
Erreur sur le tangage	1.90	

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [27 31]) est de -0.633 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus de ce fichier après désalignement.

2.6 Nettoyage des données

Ce qui correspond au graphique suivant :

2.7 Exploitation des données - Tracés

2.7.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

2.7.2 Définition des sections

Au cours de cette campagne, 1 section a été défini :

N°	Date début	Date fin	Localisation
1	24/10/2019 14:08:50	31/10/2019 07:29:27	Océan Indien

Tableau 4- Date et localisation des sections de la campagne

La carte est la suivante :

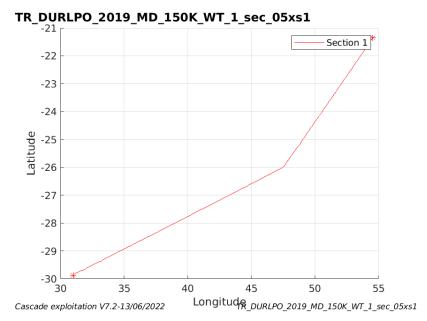


Figure 3- Carte des sections définies sur le trajet de la campagne

2.7.3 Images des sections

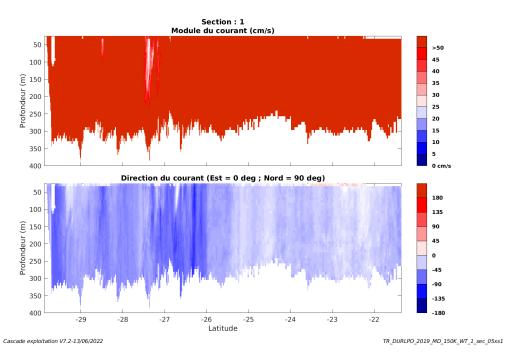


Figure 4 - Composantes du courant - Section 1 de la campagne de 0 à 400m

2.7.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m et 100-200m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et 1 donnée sur 2 est tracée.

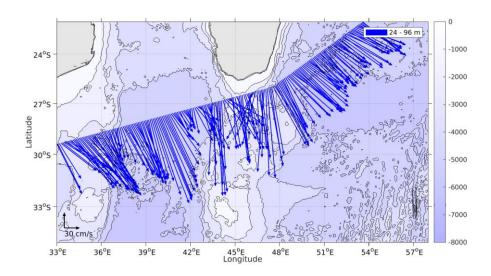


Figure 5- Vecteurs du courant de la section 1 de 0 à 100 m

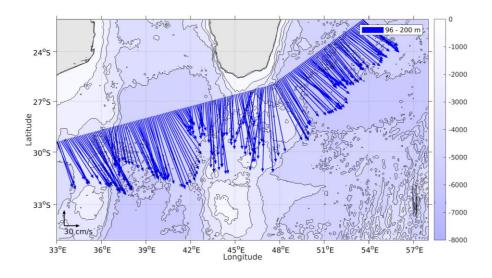


Figure 6- Vecteurs du courant de la section 1 de 100 à 200 m

